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Abstract

In this work, we explore the problem of generating fan-

tastic special-effects for the typography. It is quite chal-

lenging due to the model diversities to illustrate varied text

effects for different characters. To address this issue, our

key idea is to exploit the analytics on the high regularity of

the spatial distribution for text effects to guide the synthesis

process. Specifically, we characterize the stylized patches

by their normalized positions and the optimal scales to de-

pict their style elements. Our method first estimates these

two features and derives their correlation statistically. They

are then converted into soft constraints for texture transfer

to accomplish adaptive multi-scale texture synthesis and to

make style element distribution uniform. It allows our algo-

rithm to produce artistic typography that fits for both local

texture patterns and the global spatial distribution in the ex-

ample. Experimental results demonstrate the superiority of

our method for various text effects over conventional style

transfer methods. In addition, we validate the effectiveness

of our algorithm with extensive artistic typography library

generation.

1. Introduction

Typography is the technology to design the special text

effects to render the character into an original and unique

artwork. These amazing text styles include basic effects

such as shadows, outlines, colors and sophisticated effects

such as burning flames, flowing smokes, multicolored neon-

s, as shown in Fig. 1. Texts decorated by well-designed

special effects become much more attractive. It can also

better reflect the thoughts and emotions from the designer.

The beauty and elegance of text effects are well appreciated,

making it widely used in the publishing and advertisemen-

t. However, creating vivid text effects requires a series of

subtle processes by an experienced designer using the edit-

ing software: determine color styles, warp textures to match

text shapes and adjust the transparency for visual plausible-

ness, etc. These advanced editing skills are far beyond the
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Figure 1. Overview: Our method takes as input the source text im-

age S, its counterpart stylized image S
′ and the target text image

T , then automatically generates the target stylized image T
′ with

the special effects as in S
′.

abilities of most casual users. This practical requirement

motivates our work: We investigate an approach to auto-

matically transfer various fantastic text effects designed by

artists onto raw plain texts, as shown in Fig. 1.

Text effects transfer is a brand new sub-topic of style

transfer. Style transfer can be related to color and texture

transfer, respectively. Color transfer matches global [27] or

local [31] color distributions of the target and source im-

ages. Texture transfer relies on texture synthesis technolo-

gies, where the texture generation is constrained by guid-

ance images. Meanwhile, texture synthesis can be divided

into two categories: non-parametric methods [7, 6, 15, 35]

and parametric methods [14, 9, 17, 11]. The former gen-

erates new textures by resampling pixels or patches from

the original texture, while the latter models textures using

statistical measurements and produces a new texture that

shares the same parametric results with the original one.

From a technical perspective, it is quite challenging and

impractical to directly exploit the traditional style transfer

methods to generate new text effects. The challenges lie in

three aspects: (i) The extreme diversity of the text effects

and character shapes: The style diversity makes the trans-

fer task difficult to model uniformly. Further, the algorithm

should be robust to the tremendous variety of characters. (i-

i) The complicated composition of style elements: A text

effects image often contains multiple intertwined style el-

ements (we call them text sub-effects) that have very dif-
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ferent textures and structures (see denim fabric example in

Fig. 1) and need specialized treatments. (iii) The simple-

ness of guidance images: The raw plain text as guidance

gives few hints on how to place different sub-effects. Tex-

tures in the white text and black background regions may

not hold the stationarity. This makes the traditional non-

parametric texture-by-numbers method [12] fail, which has

assumed textures to be stationary in each region of the guid-

ance map. Meanwhile, the plain text image provides lit-

tle semantic information. This makes the recent successful

parametric deep-based style transfer methods [10, 17] lose

their advantages of representing high-level semantic infor-

mation. For these reasons, conventional style transfer meth-

ods for general styles perform poorly on text effects.

In this paper, we propose a novel text effects transfer

algorithm to address these challenges. The key idea is to

analyze and model the distance-based essential character-

istics of high-quality text effects and to leverage them to

guide the synthesis process. The characteristics are summa-

rized based on the analytics over dozens of well-designed

text effects into a general prior. This prior guides our style

transfer process to synthesize different sub-effects adaptive-

ly and to simulate their spatial distribution. All measure-

ments are carefully designed to achieve certain robustness

to the character shape. In addition, we further consider the

psycho-visual factor to enhance image naturalness. In sum-

mary, our contributions are threefold:

• We raise a brand new topic of text effects transfer that

turns plain texts into fantastic artworks, which enjoys

wide application scenarios such as picture creation on

social networks and commercial graphic design.

• We perform investigation and analysis on well-

designed typography and summarize the key distance-

based characteristics for high-quality text effects. We

model these characteristics mathematically to form a

general prior that can be used to significantly improve

the style transfer process for texts.

• We propose the first method to generate compelling

text effects, which share both similar local texture pat-

terns and the global spatial distribution with the source

example, while preserving image naturalness.

2. Related Work

Color Transfer. Pioneering color transfer methods

[27, 25] transfer color between images by matching their

global color distributions. Subsequently, local color trans-

fer is achieved based on segmentation [31, 32] or user in-

teraction [34] and it is further improved using fine-grained

patch [30] or pixel [29, 24] correspondences. Recently, col-

or transfer [36] and colorization [16, 37] using deep neural

networks have drawn people’s attentions.

Non-Parametric Texture Synthesis and Transfer. E-

fros and Lueng [7] proposed a pioneering pixel-by-pixel

synthesis approach based on sampling similar patches. The

subsequent works improve it in quality and speed by synthe-

sizing patches rather than pixels. To handle the overlapped

regions of neighboring patches for seamlessness, Liang et

al. [19] proposed to blend patches, and Efros and Freeman

[6] used dynamic programming to find an optimal separatrix

in overlapped regions, which is further improved via graph

cut [15]. Unlike previous methods that synthesize textures

in a local manner, recent techniques synthesize globally us-

ing objective functions. A coherence-based function [35] is

proposed to synthesize textures in an iterative coarse-to-fine

fashion. This method performs patch matching and voting

operations alternately and achieves good local structures. It

is then extended to adapt to non-stationary textures through

patch geometric and photometric transformations [2, 5].

Texture transfer, also known as Image Analogies [12],

generates textures but also keeps the structure of the tar-

get image. Structures are usually preserved by reducing the

differences between the source and target guidance maps

[12, 23]. In [21], texture boundaries are synthesized in pri-

ority to constrain the structure. Frigo et al. [8] proposed

an adaptive patch partition to precisely capture source tex-

tures and preserve target structures, followed by a Markov

Random Field (MRF) function for global texture synthesis.

Parametric Texture Synthesis and Transfer. The idea

of modelling textures using statistical measurements has

led to the development of textons and its variants [14, 26].

Nowadays, deep-based texture synthesis [9] starts trending

due to the great descriptive ability of deep neural networks.

Gatys et al. proposed to use Gram-matrix in the Convolu-

tional Neural Networks (CNNs) feature space to represent

textures [9] and adapt it to style transfer by incorporating

content similarities [10]. This work presented the remark-

able generic painting transfer technique and attracted many

follow-ups in loss function improvement [20, 28] and al-

gorithm acceleration [13, 33]. Recently, methods that re-

place the Gram-matrix by MRF regularizer is proposed for

photographic synthesis [17] and semantic texture transfer

[3]. Meanwhile, Generative Adversarial Networks (GAN-

s) [11] provide another idea for texture generation by us-

ing discriminator and generator networks, which iterative-

ly improve the model by playing a minimax game. Its ex-

tension, the conditional GANs [22], fulfils the challenging

task of generating images from abstract semantic labels. Li

and Wand [18] further showed that their Markovian GANs

has certain advantages over the Gram-matrix-based meth-

ods [10, 33] in coherent texture preservation.

3. Proposed Method

In this section, we first formulate our text effects transfer

problem. Visual analytic is then presented on our observa-
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Figure 2. Statistics of the text effects images. (a)(c) flame and denim fabric text effects. (b)(d) Textures with similar distances to the text

skeleton (in white) tend to have similar patterns. (e) Pixels are divided into N = 16 classes using different partition modes. (f)-(g) High

correlation between pixel colors and distances: Pixels are distinguished from each other by their distances in RGB space. (h)-(i) High

correlation between patch scales and distances: Patches with similar distances have uniform responses to changes of their size.

tion of the high correlation between patch patterns (i.e. col-

or and scale) and their spatial distributions in text effects

images (Sec. 3.1). Based on this observation, we extract

text effects statistics from the source images (Sec. 3.2) and

employ it to adapt the texture synthesis algorithm for high-

quality text effects transfer (Sec. 3.3).

3.1. Problem Formulation and Analysis

Text effects transfer takes as input a set of three images,

the source raw text image S, the source stylized image S′

and the target raw text image T , then automatically pro-

duces the target stylized image T ′ with the text effects such

that S : S′ :: T : T ′. For our patch-based algorithm, in the

following we use p and q to denote the pixels in T/T ′ and

S/S′, respectively, and use P (p) and P ′(p) to represent the

patches centered at p in T and T ′, respectively. The same

goes for patches Q(q) and Q′(q) in S and S′.

To transfer arbitrary text effects automatically, we have

to face a variety of text effects, the complex composition of

text sub-effects and the simpleness of guidance maps. Thus,

it is a quite challenging task. How to synthesize preferable

text effects is still an open question. That is, (i) what is the

essential factor to make text effects preferable? and (ii) how

can we capture these characteristics for synthesis?

Fortunately, after mathematically analyzing dozens of

text effects created by designers, we find the clue: the high

correlation between patch patterns (i.e. color and scale)

and their distances to text skeletons. We note that textures

with similar distances to the text skeleton tend to share sim-

ilar patterns. It is schematically illustrated in Figs. 2(b)(d)

where the patches with the same distance to the skeleton (in

white) are marked by the same color. This observation is

consistent with the texture adaptation based on text shapes

for readability conducted by designers in the real world.

To quantitatively verify this correlation, we divide pix-

els/patches in text effects images into N classes based on

their distance to the text skeleton (distance calculation will

be given in Sec. 3.2.2) and use the differentiation of N par-

titions as the measurement. Two examples of the distance-

based partition are shown in the top row of Fig. 2(e), where

we exploit different colors to denote each class.

For the pixel color, taking flame image for example, by

marking each point in RGB space (Fig. 2(f)) with its class-

color, we note that the points in Fig. 2(g) with the same

class-color appear in the neighborhood, which means pix-

el colors have strong correlation with their distance values.

Thus, we quantify it as the classification accuracy,

corr(color, dist) = 1− ǫ, (1)

where ǫ is the training error obtained by training SVM [4] to

classify pixel colors given our distance-based partition. The

mean correlation between pixel colors and the distance val-

ues on 30 text effects images created by designers is 0.147.

We also provide other three partition modes (as shown in

the bottom row of Fig. 2(e)) as well as the random partition

mode for comparison in the experiments. Their mean cor-
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Table 1. Correlations between patch patterns and different modes.

corr rand grid angle ring dist

color 0.063 0.106 0.119 0.105 0.147

scale 0.153 0.793 0.486 0.590 0.950

relations with pixel colors over 30 test images are shown in

the second row of Table 1. As expected, the distance is the

most important factor to depict pixel colors.

For the patch scale, we enumerate patch sizes and calcu-

late the difference between each patch and its best match,

which forms a response curve at different scaling. Taking

denim fabric image for example, Figs. 2(h) and (i) show

N response curves of patch sizes in distance and random

modes, respectively. Each point on the curve gives the

mean and standard deviation of patch differences at a cer-

tain patch size in the corresponding class. We find that: (i)

Response curves in distance mode are more diverse (high

inter-curve standard deviations σinter), which means differ-

ent sub-effects are well distinguished by their distance val-

ues. (ii) Points on response curves in distance mode have

lower standard deviations (low intra-curve standard devi-

ations σintra), which means patches with similar distances

react uniformly to scale changing and possibly share com-

mon optimal scale for description. Considering these two

aspects, we evaluate the correlation with the patch scale by,

corr(scale, dist) = σinter/σintra. (2)

Here σinter and σintra are defined as sum of standard devia-

tions σ with different patch sizes. Given a patch size, σ is

standard deviation of mean patch differences of N points in

different curves for σinter and is mean of standard deviation-

s of N points for σintra. The bottom row of Table 1 shows

the mean correlations between the patch scale and different

modes on 30 images where distance owns the highest value.

Based on the results for pixel colors and patch scales,

we obtain the conclusion that the high correlation between

patch patterns and their distances is reasonable essential

characteristics for high-quality text effects.

3.2. Text Effects Statistics Estimation

We now convert the aforementioned analysis into patch

statistics that can be directly used as the transfer guidance.

Specifically, we detect the optimal scales for source patches,

and estimate their normalized distances to the text skeleton.

Then we are able to derive the posterior probability of the

optimal scale for each patch based on its spatial position.

3.2.1 Optimal Patch Scale Detection

Inspired by [8], we propose a simple yet effective approach

to detect the optimal patch scale scal(q) to depict texture

patterns round q. Given a predefined downsample factor s,
we start from the max (roughest) scale L to filter source

patches and let the screened patches pass to a finer scale.
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(a) Optimal scale map (b) Visualized patch scale

Figure 3. Detected optimal patch scales for the flame image.

We use a fixed patch size of m×m and resize the image

to accomplish multiple scales. Let Sℓ be the downsampled

source S with a scale rate of 1/sℓ−1 and Qℓ(q) be the patch

centered at q/sℓ−1 in Sℓ. S
′
ℓ and Q′

ℓ(q) are similarly de-

fined. If q̂ is the correspondence of q at scale ℓ such that

q̂ = argmin ‖Qℓ(q)−Qℓ(q̂)‖
2 + ‖Q′

ℓ(q)−Q′
ℓ(q̂)‖

2, (3)

then our filter criterion at scale ℓ is

ζℓ(q, q̂) =
(
σℓ +

√
dℓ(q, q̂) > ω

)
, (4)

where σℓ =
√

Var(Q′
ℓ(q))/2. Patches that satisfy the filter

criterion pass through to finer scale ℓ − 1, while the filter

residues set ℓ as their optimal scales. An example of the

optimal scales for the flame image is shown in Fig. 3(a). It

is found that the textured region near the character requires

finer patch scales than the outer flat region. For better visu-

alization, we show the optimal scale of the patch Q(q) by

resizing it at a scale rate of sscal(q)−1 in Fig. 3(b).

3.2.2 Robust Normalized Distance Estimation

Here we first define some concepts. In the text image, it-

s text region is denoted by Ω. The skeleton skel(Ω) is a

kernel path within Ω. We use dist(q, A) to denote the dis-

tance between q and its nearest pixel in set A. We are going

to calculate dist(q, skel(Ω)). For q on the text contour δΩ,

the distance is also known as the text width or radius r(q).
Fig. 4(b) gives the visual interpretation.

We extract skel(Ω) from S using morphology opera-

tions. To ensure the distance invariant to the text width, we

aim to normalize the distance so that the normalized text

width equals to 1. Simply dividing the distance by the text

width is unreliable because the inaccurate of the obtained

skel(Ω) leads to errors both in the numerator and denom-

inator as well. To address this issue, we estimate correct-

ed text width r̃(q) based on statistics and use the accurate

dist(q, δΩ) to derive normalized dĩst(q, skel(Ω)).
Specifically, we sort r(q), ∀q ∈ δΩ and obtain their rank-

ings rank(q). We observe that the relation between r(q)
and rank(q) can be well modelled by linear regression, as

shown in Figs. 4(d). From Figs. 4(b)(d), we discover that
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Figure 4. Robust normalized distance estimation. (a) The text im-

age. (b) Our detected text skeleton and the notation definition. (c)

The estimated normalized distance. The distance of the pixels on

the text boundary to the text skeleton are normalized to 1 (colored

by magenta). (d) The statistics of the text width.

outliers assemble at small values. We empirically assume

the leftmost 20% points are outliers and eliminate them by

r̃(q) = max(dist(q, skel(Ω)), 0.2k|δΩ|+ b), (5)

where k, b are linear regression coefficients, |δΩ| is the pixel

number of δΩ. Finally, the normalized distance is obtained,

dĩst(q, skel(Ω)) =

{
1 + dist(q, δΩ)/r, if q /∈ Ω

1− dist(q, δΩ)/r̃(q⊥), other
, (6)

where q⊥ ∈ δΩ is the nearest pixel to q along δΩ and r =
0.5k|δΩ|+ b is the mean text width.

For simplicity, we omit skel(Ω) and use dist(q) to refer

to dĩst(q, skel(Ω)) in the following.

3.2.3 Optimal Scale Posterior Probability Estimation

In this section, we derive the posterior probability of the op-

timal patch scale to model the aforementioned high correla-

tion between patch patterns and their spatial distributions.

We uniformly quantify all distances into 100 bins and

denote bin(q) as the bin q belongs to. Then, a 2-d histogram

hist(ℓ, x) is computed:

hist(ℓ, x) =
∑

q

ψ(scal(q) = ℓ ∧ bin(q) = x), (7)

where ψ(·) is 1 when the argument is true and 0 otherwise.

And the joint probability of the distance and the optimal

scale can be estimated as,

P(ℓ, x) = hist(ℓ, x)/
∑

ℓ,x

hist(ℓ, x). (8)

Finally, the posterior probability P(ℓ|bin(q)) for ℓ being the

appropriate scale to depict the patches with distances corre-

sponding to bin(q) can be deduced:

P(ℓ|bin(p)) = P(ℓ, bin(p))/
∑

ℓ

P(ℓ, bin(p)). (9)

We assume the target images share the same posterior

probability with the source image. And we will use this

probability to select patch scales statistically for texture

synthesis to adapt extremely various text effects.

3.3. Text Effect Transfer

In this section, we describe how we adapt convention-

al texture synthesis method to dealing with the challenging

text effects. We build on the texture synthesis method of

Wexler et al. [35] and its variants [5] using random search

and propagation as in PatchMatch [1, 2]. We refer to these

papers for details of the base algorithm.

We apply character shape constrains to the patch appear-

ance measurement to build our baseline, and further incor-

porate estimated text effects statistics to accomplish adap-

tive multi-scale style transfer (Sec. 3.3.2). Then a distri-

bution term is introduced to adjust the spatial distribution

of the text sub-effects (Sec. 3.3.3). Finally, we propose a

psycho-visual term that prevents texture over-repetitiveness

for naturalness (Sec. 3.3.4).

3.3.1 Objective Function

We augment the texture synthesis objective function in [35]

by including a distribution term and a psycho-visual term.

And our objective function takes the following form,

min
q

∑

p

Eapp(p, q) + λ1Edist(p, q) + λ2Epsy(p, q), (10)

where p is the center position of a target patch in T and T ′,

q is the center position of the corresponding source patch

in S and S′. The three terms Eapp, Edist and Epsy are the

appearance, distribution and psycho-visual terms, respec-

tively, which are weighted by λ1 and λ2 to together make

up the patch distance.

3.3.2 Appearance Term: Texture Style Transfer

The original texture synthesis algorithm of Wexler et al.

[35] minimizes the Sum of the Squared Differences (SS-

D) of two patches sampled from texture image pair S′/T ′.

We adapt it to texture transfer tasks by applying additional

SSD of two patches sampled from the text image pair S/T :

Eapp(p, q) = λ3‖P (p)−Q(q)‖2+‖P ′(p)−Q′(q)‖2, (11)

where λ3 is a weight that compromises between the color

difference and character shape difference. We take the ob-

jective function that only minimizes the appearance term in

Eq. (11) as our baseline.
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Stylized texts often contain multiple sub-effects with d-

ifferent optimal representation scales. Thus, in addition to

the baseline, we propose the adaptive scale-aware patch dis-

tance by incorporating the estimated posterior probability,

Eapp(p, q) =λ3
∑

ℓ

P(ℓ|bin(p))‖Pℓ(p)−Qℓ(q)‖
2

+
∑

ℓ

P(ℓ|bin(p))‖P ′
ℓ(p)−Q′

ℓ(q)‖
2.

(12)

The posterior probability helps to explore patches through

multiple appropriate scales for better textures synthesis.

3.3.3 Distribution Term: Spatial Style Transfer

The distribution of sub-effects highly correlates with their

distances to the text skeleton. Based on this prior, we intro-

duce a distribution term,

Edist(p, q) =
(
dist(p)− dist(q)

)2
/max(1, dist2(p)), (13)

which encourages the text effects of the target to share sim-

ilar distribution with the source image, thereby realizing a

spatial style transfer. To ensure that the cost is invariant to

the image scale, we add the denominator max(1, dist2(p)).

3.3.4 Psycho-Visual Term: Naturalness Preservation

Texture over-repetitiveness can seriously reduce human

subjective evaluation in the aesthetics. Therefore, we aim to

penalize certain source patches to be selected repetitiously.

Let Φ(q) be the set of pixels that currently find q as their

correspondence and |Φ(q)| be the size of the set. We define

the psycho-visual term as,

Epsy(p, q) = |Φ(q)|. (14)

From the perspective of q, we can better understand this

repetitiveness penalty:
∑

p

|Φ(q)| =
∑

q

∑

p∈Φ(q)

|Φ(q)| =
∑

q

|Φ(q)|2.
(15)

Since
∑

q |Φ(q)| = |T | is constant, Eq. (15) reaches the

minimum when all |Φ(q)| equals. It means our psycho-

visual term encourages source patches to be used evenly.

3.3.5 Function Optimization

We follow the iterative coarse-to-fine matching and voting

steps as in [35]. In the matching step, PatchMatch algo-

rithm [1, 2] is adopted. We update Φ(q) after each itera-

tion of search and propagation for the psycho-visual term.

Meanwhile, the initialization of T ′ plays an important role

in the final results, since our guidance map provides very

few constraints on textures. We vote the source patches that

are searched to only minimize Eq. (13) to form our initial

guess of T ′. This simple strategy improves the final results

significantly as shown in Fig. 6.

(a) m = 5, L = 1 (b) m = 15, L = 1 (c) m = 5, L = 5

Figure 5. Effects of the multi-scale strategy. (a) Results using

single-scale 5× 5 patches. (b) Results using single-scale 15× 15

patches. (c) Results using joint 5× 5 patches over 5 scales.

(a) λ1 = 0.0 (b) λ1 = 0.1 (c) λ1 = 0.1+ Init

Figure 6. Effects of the distribution term. (a) Results without dis-

tribution term. (b) Results obtained by random initialization and

optimization with distribution term. (c) Results obtained by both

initialization and optimization with distribution term.

4. Analysis

Appearance Term. The advantages of the proposed ap-

pearance term lie in two aspects: (i) Preserve coarse grained

texture structures. (ii) Preserve texture details. We show in

Figs. 5(a) and (b) the denim fabric style generated using

single-scale 5× 5 and 15× 15 patches, respectively. Small

patches capture very limited contextual information, thus it

cannot guarantee the structure continuity. As can be seen in

Fig. 5(a), sewing threads look cracked and are not along the

uniform directions. However, choosing large patches leads

to smoothing out tiny thread residues as in Fig. 5(b). These

problems are well solved by jointly using 5×5 patches over

5 scales as in Fig. 5(c), where the overall shape is well pre-

served and the details like sewing threads look more vivid.

Distribution Term. The distribution term ensures the

sub-effects in the target image and the source example are

similarly distributed, which is the basis of our assumption in

Sec. 3.2.3 that the posterior probabilities P(ℓ|x) in T ′ and

S′ are the same. Fig. 6 shows the effects of the distribution

term on the flame style. Without distribution constraints, the

flames appear randomly in the black background. The dis-

tribution term adjusts the flames to better match their spatial

distribution as that in the source example.

Psycho-Visual Term. The effects of our psycho-visual

term are shown in Fig. 7. The lava textures synthesized

without the psycho-visual penalty (Fig. 7(a)) densely re-

peat the red cracks in several regions, which causes ob-

vious unnaturalness. By increasing the penalty, the reuse
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(a) (S, S′) (b) T (c) Analogy [12] (d) Split & match [8] (e) Neural doodle [3] (f) Baseline (g) Proposed method

Figure 8. Comparison with state-of-the-art methods on various text effects. From top to bottom: neon, smoke, denim fabric. (a) Input

source text effects with their raw text counterparts in the lower-left corner. (b) Target text. (c) Results of Image Analogies [12]. (d) Results

of Split and Match [8]. (e) Results of Neural Doodles [3]. (f) Results of our baseline method. (g) Results of the proposed method.

(a) λ2 = 0.0 (b) λ2 = 0.005 (c) λ2 = 0.01

Figure 7. Effects of the psycho-visual term, which penalizes tex-

ture over-repetitiveness and encourages new texture creation.

of the same source textures is greatly restrained (Fig. 7(b))

and our method tends to agilely combine different source

patches to create brand-new textures (Fig. 7(c)). Thus, the

psycho-visual term can effectively penalize texture over-

repetitiveness and encourage new texture creation.

Combination of the Three Term. It is worth noting that

the proposed three terms are complementary: First, the ap-

pearance and distribution terms emphasize local texture pat-

terns and global text sub-effects distributions, respectively.

The former depicts low-level color features while the latter

exploits complementary mid-level position features. Sec-

ond, the appearance and distribution terms jointly evaluate

objective patch similarities. Meanwhile, the psycho-visual

term complements these two terms by incorporating aes-

thetic subjective evaluations.

5. Experimental Results

In the experiment, the patch size is 5 × 5 and the max

scale L = 5. We build an image pyramid of 10 levels with

a fixed coarsest size (32 × 32). At level ℓ, joint patches

over scales from ℓ to min(10, ℓ + L − 1) are used. The

weights λ1, λ2 and λ3 to balance different terms are set to

0.01, 0.005 and 10, respectively. The parameter ω for the

filter criterion is 0.3 in our implementation1.

In Fig. 8, we present a comparison of our algorithm

with three state-of-the-art style transfer techniques as well

as our baseline. The first method is the pioneering Image

Analogies [12]. The textures in their results repeat local-

ly and look disordered globally with evident patch bound-

aries. The second method is our implementation of Split

and Match [8], which synthesizes textures using adaptive

patch sizes. The original method directly transfers the style

in S′ to T without the help of S. To make a fair compari-

son, we incorporate the guidance by using S instead of S′ in

the split stage. This method fails to generate textures in the

background and produces plain stylized results. The third

method, Neural Doodle [3], is based on the combination

of MRF and CNN [17] and incorporates semantic maps for

analogy guidance. While the color palette of the example

text effects is transferred, fine textures are poorly synthe-

sized. The text shape is lost as well. Our baseline transfers

fine textures but fails to keep the overall sub-effects distri-

bution and generates artifacts in the background. By com-

parison, the proposed method outperforms state-of-the-art

methods, preserving both local textures and the global sub-

effects distribution.

In Fig. 9, we present an illustration of style transfer from

1We release our Matlab implementation at: https://github.

com/williamyang1991/Text-Effects-Transfer
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(a) Target text (b) flame (c) lava (d) rust (e) drop (f) pop (g) blink

Figure 9. Apply different text effects to representative characters (Chinese, alphabetic, handwriting).

Figure 10. An overview of our flame typography library. The bigger image at the top left corner serves as the example to generate the other

774 characters. The whole library as well as the other stylized libraries can be found in the supplementary material.

six very different text effects to three representative charac-

ters (Chinese, alphabetic, handwriting). This experimen-

t covers challenging transformations between styles, lan-

guages and fonts. Thanks to distance normalization and

multi-scale strategy, our algorithm accomplishes to transfer

the text effects regardless of character shapes and texture

scales, providing a solid tool for artistic typography.

Finally, we show our flame typography library including

as much as 775 frequently used Chinese characters. Due to

the space limitation, only the first 32 of them are presented

in Fig. 10. The whole library as well as the other typog-

raphy libraries are included in our supplementary material.

The extensive synthesis results demonstrate the robustness

of our method to varied character shapes.

6. Conclusion

In this paper, we raise the text effects transfer problem

and propose a novel statistics-based method to solve it. We

convert the high correlation between the sub-effects pattern-

s and their relative spatial distribution to the text skeletons

into soft constraints for text effects generation. An objec-

tive function with three complementary terms is proposed

to jointly consider the local multi-scale texture, global sub-

effects distribution and visual naturalness. We validate the

effectiveness and robustness of our method by comparisons

with state-of-the-art style transfer algorithms and extensive

artistic typography generations. Future work will concen-

trate on the composition of the stylized texts and the back-

ground photos.
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